背景知识
在信号处理领域中,对于信号处理的实时性、快速性的要求越来越高。而在许多信息处理过程中,如对信号的过滤、检测、预测等,都要广泛地用到滤波器。其中数字滤波器具有稳定性高、精度高、设计灵活、实现方便等许多突出的优点,避免了模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题,因而随着数字技术的发展,用数字技术实现滤波器的功能越来越受到人们的注意和广泛的应用。其中有限冲激响应(FIR)滤波器能在设计任意幅频特性的同时保证严格的线性相位特性,在语音、数据传输中应用非常广泛。多相(Poly phase)数字滤波器是信号输入输出速率可变的一种滤波器,它广泛应用于TV-Scaler,专业的音响系统,时分复用,频分复用系统以及语音处理的子带编码中。
基本原理
导入数字滤波器的信号处理过程示于图。其中模拟信号(连续信号)
必须利用采样定理(sampling theorem)进行采样。输入信号经过模拟低通滤波即抗折叠滤波器(anti-aliasing filter)去掉输入信号中的高频分量。经过平滑化的模拟信号再用于采样。另外D-A转换后模拟信号要经过平滑滤波器(smoothing filter)进行平滑处理,该工作可用模拟低通滤波器来完成。
另外,数字通信中使用的数字均衡器(digital equalizer)也可以视作一种数字滤波器,但是用数字均衡器直接进行数字信号处理时,就不再需要图中的A-D转换器和D-A转换器。
所谓数字滤波器,就是把输入序列通过一定的运算变换成输出序列。如上图所示。其时域输入输出关系是
若x(n) ,y (n)的傅里叶变换存在,则输入输出的频域关系是
假定|X(ejw)|,|H(ejw)|如图中(a),(b)所示,则由式得|Y(ejw)|如图(c)所示。
这样,x(n)通过系统h(n)的结果是使得输出y(n)中不再含有|w|>wc的频率部分,而使|w|<wc的成分不失真的通过。因此,设计出不同形状的|H(ejw)|,可以得到不同的滤波效果。